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Abstract-From the analysis of a conjugate problem of convective heat transfer in a laminar incompressible 
flow around a flat plate ofa finite thickness the design formulas are suggested for a local Nusselt number Nu, 

(NuJNu,,) - 1 = CB,,(O< Br, < 1.5), 

(NuJNu,,) - 1 = C, - (C/?rJ, (1.5 <Br, < m), 

where Nu, is the Nusselt number withtlr, = 0 (the Nusselt number defined by the ordinary heat transfer 
equations) andBr, is the IocalBrun number (a conjugation number). 

a, thermal diffusivity [m’/s]; 

Br,; local Brun number 

erfc z = 1-erf z, additional error func- 
tion ; z 

,. P 
erfz = k. exp(-z’)dz, 

J 

K, B, 

1, 

L,, 

NW, B), 

N*, 

pi-, 
4, 
Rex, 

dimensionless variables defined by 

formulas (3.11); 

plate length [ml; 
normal to isothermal surface [ml; 

local Nusselt number 

(Nux=F) ; 

dimensionless function defined by 

formula (3.14); 
the ratio of local Nusselt number Nux, 

to Nuxo in an ordinary problem (Brt = 0) 

N* = Nu,/Nu,~ ; 
Prandtl number; 

heat flux density [W/m’]; 
local Reynolds number 

(Rex=?): 

x*, 
x, Y, z, 
u W) 

u x9 

H.M.T. I7 2---G 

&id temperature [“Cl; 
plate temperature [“C] ; 
fluid velocity far from the wall [m/s] ; 
longitudinal and transverse fluid veloci- 

ties in a boundary layer [m/s]; 
dimensionless coordinate x(x* = x/l); 
Cartesian coordinates [ml; 
local heat transfer coefficient [W/m2 

%I; 
mean heat transfer coefficient for a flow 
over a plate [W/m’ deg]; 

NOMENCLATURE 6, 
b, 
5, 

cp(K B), 

Subscripts 

w, 

b, 

f 9 
s, 
a, 

0, 

thickness ofvelocity boundary layer [ml; 

plate thickness [ml; 

thermal boundary layer thickness to 

velocity boundary layer thickness ratio 

(5 = 6,/6); 
dimensionless function defined by 

formula (3.15). 

refers to the wall surface in contact with 
fluid; 
refers to the wall surface maintained at 
constant temperature; 

refers to fluid; 
refers to solid (wall); 
refers to fluid flow core (T, E T, : 

0, = 0,); 
Nusselt number value at the Brun 
number equal to zero (Br = 0). 

1. STATEMENT OF PROBLEM 

HEAT transfer between a solid wall and a fluid flow is 

usually calculated according to the so-called Newton 
law of convective heat transfer. From this equation 
the heat flux density q is directly proportional to a 
temperature driving force AT(AT = (T, - T,) 

q = a,(T’, - T,,) = a,AT (1.1) 

Proportionality factor u, termed a heat-transfer 
coefficient is variable along the solid surface, and in 
unsteady heat-transfer processes it depends on time z. 

Relation (1.1) is only valid and physically meaning- 
ful at a constant temperature of the wall (T, = const). 
In a flow past a plate or in a tube flow the wall tem- 
perature is variable along the fluid flow. The be- 
haviour of the wall temperature along the flow cannot 
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be prescribed as it depends on the flow dynamics 
and thermal conductivity of the wall. 

In case of heat sources present at the wall surface 
or inside the wall ATmay be negative (7’,‘, < T,) at 
particular regions. The heat transfer coefficient is 
then negative, that is inconsistent with its physical 
significance. If x is used to denote a direction of a 
liquid flow over a flat plate, then relation (1.1) may 
be written as 

4 = Nu,$(T, - T,) (1.2) 

where Nu, is the local Nusselt number. 
The surface temperature of the plate depends not 

only on the x-coordinate and heat sources in the plate 
but on thermal conductivity of the plate as well. This 
fact is verified experimentally. In Fig. 1 reproduced 
from [l] relation Nu, = .f(x*) is presented for ceramic 
and glass plates. The figure shows that the curve 
f(x*) has extrema and for a glass plate with x* > 5 
the local Nusselt number is negative (Nu, < 0). Thus 
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FIG. 1. Local Nusselt numbers along the coordinate x*- 
ceramic and glass plates (reproduced from [ 11). 

for calculation of the Nusselt number Nu, a simul- 
taneous solution of the problem on heat transfer in a 
fluid flow over a solid wall and the heat conduction 
problem inside the solid wall is necessary, i.e. a 
conjugate problem should be solved. For the solution 
of a conjugate problem the boundary conditions of 
the third kind corresponding to convective heat 

transfer 

I, g ( > + aw(Tw - T,) = 0 (1.3) 
W 

should be substituted by the boundary conditions of 
the fourth kind 

- $(n),= - i.,@; T, = 8, (1.4) 

at the surface. 
Relations (1.3) and (1.4) are valid with no heat 

sources at the wall. Boundary conditions of the fourth 
kind and conjugate problems of convective heat 
transfer have originally been formulated in [2] and 
their solution has first been published in reference [3]. 

During the last decade a great number of works 
concerned with conjugate problems have been done 
and more than one hundred relevant papers have 
been published [4]. In the papers conjugate problems 
of heat transfer in a compressible fluid flow over a 
plate and in a tube flow are attacked. The analytical 
solutions obtained are extremely complex which is a 
common disadvantage of all the works. In a great 
number of works the problems have been solved by 
numerical methods similar to that described in [I]. 
The numerical procedure for solution of conjugate 
problems of convective heat transfer is described in 
[5]. Nu, is ordinarily found from the solution of a 
heat-transfer problem in a boundary layer. For 
example, for a two-dimensional problem (a flow past 
a flat plate) 

N”x = y = - (T, ” T,) (1.5) w 

where y is a normal to the wall (y = n). Here as stated 
above, a constant wall temperature T, = const is 
assumed. In approximate solutions and empirical 
formulas obtained from experimental data relations 
of the type 

Nu, = APJ” Re”, (1.6) 

are used where A and n are constants. 
For example, in a laminar flow over a plate the 

constants are 14) 

A=0.332; m=i; n=i. (1.7) 

In conjugate convective heat transfer problems 
local Nusselt numbers are also found from formula 
(1.5). The surface temperature of the wall T, is how- 
ever found from a solution of the convective heat 
transfer problem in a boundary layer and the heat 
conduction problem inside the wall with boundary 
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conditions (1.4). Then relation (1.5) becomes 

Nux = [T(o,i;- T,] g ( > - 
w 

The aim of the present paper is an attempt to get 
approximate solutions of conjugate convective heat 
transfer problems which would be useful for engineer- 
ing practice. 

2. CONJUGATION NUMBER 

As has been mentioned above, a correct physical 
statement of a convective heat transfer problem 
between a wall and the surrounding fluid is a conju- 
gate form. If thermal conductivity of the wall is how- 
ever large compared with that of the fluid (1, + 1,) 
the wall temperature T, will be slightly variable both 
across and along the wall (along the y- and x- 
coordinates, respectively). Then boundary conditions 
of the third kind (1.3) may be used, and the problem 
can be solved by a conventional method from 
relations (1.5) and (1.6). 

The choice whether the problem should be solved 
in a conjugate form or ordinary method is to be used 
depends not only on the ratio of the fluid-to-solid 
thermal conductivities A,/& but also on the fluid 
flow dynamics. 

A conjugation number named the Brun number is 
thus a criterion of validity of an ordinary statement of 
a problem. 

Now use will be made of a generalized variable 
method [6]. It follows from boundary condition of 
the fourth kind (1.4) that 

AtI 5 b _= ~ 
AT 1,6;(x) 

where A8 is the temperature drop across the plate, 
Sk is the conventional thickness of a boundary layer. 
Its numerical value is equal to a section of the straight 
line 9, = const (9, = T, - T,) cut by a tangential 
line to the temperature distribution curve T(y) at 
y = 0. 

The quantity AQ/AT should not exceed 0.05 
within 5 per cent. Then a temperature drop over a 
plate may be neglected and the heat-transfer problem 
may be solved by ?..I ordinary (traditional) method. 

The quantity S;(x) is known [4] to be equal to 

6;(x) = xNu;‘. (2.2) 

On the other hand the local Nusselt number Nu, 
depends on the local Reynolds number Re, and 

Prandtl number Pr defined by relation (1.6). Thus 

&)= Nu, = APr”‘Re”,, (2.3) 

and formula (2.1) may be written as 

A0 
- = A ?kPr”‘Re”,. 
A= s 

The quantity proportional to Af?/AT but A times 
smaller . . 

(2.5) 

is adopted as the Brun number Br,. 

Formula (2.5) shows that Br, depends on the 
thermal conductivity ratio l//LS and on Pr and 
Re,. 

Physically the local Brun number is proportional 
to the ratio of thermal resistances of the wall and 
boundary layer over the length x. 

For solutions of conjugate problems used for 
engineering practice a simple relation similar to 
formula (1.6) of the type 

Nu, = ABr’“R<.f(Br,) (2.6) 

may be recommended. 
To find the form of the functionf(BrJ use will be 

made of the analytical solution of the transpiration 
cooling of a plate presented in [7]. 

3. CONJUGATE PROBLEM SOLUTION BY 

DIFFERENTIAL HEAT TRANSFER EQUATION 

Take a plate with the length I exceeding consider- 
ably the thickness b(b/l + 1). The plate is placed in 
a heated air flow with the constant temperature 
q = T, = const. 

For an incompressible fluid a differential heat- 
conduction equation in a laminar boundary layer 
flow is of the form 

aw, Y) aw, Y) u-++-= x ax y ay Z$Z (3.1) 

Boundary conditions may be written in accordance 
with Fig. 2 as 

at 

at 

at 

at 

x = 0; T(0, y) = T, 

y = -b;0(-b,x = Tb = const 

(3.2) 

(3.3) 

y = o;_ 1 aT(x,o) ---= 
f ay - pgJ (3.4) 

T(x, 0) = f3(x, 0) (3.5) 

y = CO ; T(x, co) = T, = const. (3.6) 
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T, where 1* = 1JI, is the dimensionless thermal con- 
ductivity 

FIG. 2. Schematic diagram of the calculation procedure. 

Thus one of the plate surfaces is maintained at a 
constant temperature, the other is heated by a fluid 
flow at a temperature T, (q = const). At the latter 
surface (y = 0) a boundary condition of the fourth 
kind (conjugation condition) is substituted for a 
boundary condition of the third kind. Thus the 
temperature of this wall is variable along the co- 
ordinate x as T(O,x). With an ordinary (traditional) 
statement of the problem a constant temperature of 
the surface is assumed T(0, x) = T, = const. 

For small values b(b/l < 1) a linear temperature 
distribution 8(y) in a plate may be assumed 

at y = 0 - !$ + $ [T(x, 0) - TJ = 0. (3.7) 

To analyse the solution of equation (3.1) the 
following assumptions may be adopted? 

v, = fix = const, (3.8) 

vY = fis = const (3.9) 

where ii, and ti, are mean longitudinal and transverse 
velocities in a boundary layer, respectively. 

The solution of equation (3.1) with (3.8) and (3.9) 
and boundary conditions (3.2)-(3.6) is published in 
[4] and [7] _ 

t The error introduced by this assumption will be dis- . . 

K = A z(Pr)-+@ 
% b 

)-f X ’ B = +‘,,/(Pr%,) (3.11) 
X 

where & is the averaged local Reynolds number 

i+Y. 
V 

(3.12) 

Solution (3.10) implies that the temperature of the 
upper surface of the plate (T(0, x) = 0 (0, x) decreases 
as x increases and at x + 00, the temperature 
approaches that of the lower surface T,[T(O, ao) = 

TJ 
From the solution of (3.10) using formula (1.8), 

the following formula for a Nusselt number Nu, 
has been obtained [4] 

Nu, = L Pr0’5(Re,)o’5N(K, B), 
Jr 

(3.13) 

N(K,B) : ‘i 
q(K, B) - $4~ B erfc B 

p_$ _-!- 
> KJ” 

cp(K, B) + i a erfc $B 

(3.14) 

cp(K, B) = 
( > 

1 - + a (n)K exp (K2 - BK) 

x erfc(K - +B). (3.15) 

Comparison of formulas (2.5) and (3.11) reveals 
that dimensionless quantity K is inversely propor- 
tional to the local Brun number since the flow over a 
plate is laminar (n = 0.5). 

To find the relation between fix, ii, and v, use will 
be made of the Blasius solution for a flat plate in an 
incompressible fluid flow. 

In this solution an integral mean of (vJvJ is 
defined by the function .f(r) (see formula (3.1.19) in 
[4]. With < > 5 the velocity vX practically (within 
1 per cent) equals v,. Then [,f(5)/5] is equal to 
0.6566 (_ @66). The transverse velocity distribution 
depends on the quantity (vJv,)Re~‘” which beginning 
from 5 2 5.2 is actually equal to a limit value 0.8604 
(see Fig. 3.3 in [4]). The complicated distribution may 
be replaced by a linear one (see formulas (3.1.25) in 
[4]). Then a mean value E,, will be 0.43 v,Re;0’5 

cusses later. 
ux = 0.66 v,, !Y Re0’5 = 0.43. 

v * 
(3.16) 

m 
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Using formulas (3.16) we obtain 

1 
- = 0+X1$ Br,, 
K 

B = E J(Pr) = 0.53 Pr+ 

which implies that B is a function of 
number (for air Pr = 0.7, B = 044). 

Relations (3.13) are rewritten as 

/Pr\0,5 

(3.17) 

(3.18) 

the Prandtl 

Nu, = 0.81 k 
\ I 

J(&JN(K B). (3.19) 

If the plate thickness is close to zero, or Br, vanishes 
(Br, + 0, K + co) then from solution (3.19) a solution 
of an ordinary heat transfer problem is obtainable. 

Now analysis will be made of formula (3.13) 
which is written with relation (3.16) as 

Nu _ 081 p’ “’ x0- . 
0 

IE ,/(Re,W(~, B) (3.20) 

where Nu, is the value of the Nusselt number when 
K + co or Br, + 0. As K + co, the function cp(co, B) 
is 

cp(x ? B) = exp ( -$B’) 

and the function N(co, B) 

(3.21) 

N( 00, B) = exp ( - :B’) - iJ(s)B erfc 4B. (3.22) 

For air (Pe = 0.7) B = 044 and N(co, B) is 0.659 
from formula (3.22) [N(co, B) = 0.659 x 0.661. Thus 

Nu, = 0.81 x O-472 x 0.66 ,/(Re,) = 0.252 J(Re,). 

(3.23) 

Comparison of formula (3.23) with (1.6) with 
account for (1.7) yields 

Nu, = 0.332Pr+,/(Re,) = 0*294,/(Re,). (3.24) 

The only difference between formulas (3.23) and 
(3.24) is the different factor A (A = 0.252 and A = 
0.294). The difference between the two factors A is 
about 14 per cent. Formula (3.18) implies that if 
Pr --f 0, B + 0, that is the extreme value B = 0 
corresponds to Pr + 0. 

Moreover the above analysis has revealed that 
solution of differential equation (3.1) with assump- 
tions (3.8) and (3.9) gives a correct relation between 
Nu, and Re,. These assumptions only affect the value 
of factor A in formula (1.6). Relation (3.19) may there- 
fore be used for analysis of a conjugate problem 
solution. If N* (N* = Nu,/Nu,,) is used to denote 

the ratio of local Nusselt numbers Nu, and NuXo, it 
may then be written 

N* _ 1 = N”X - N”Xo 
Nu,, = 

N(K’ ;;; ;;a* ‘). (3.25) 

If K + Oo(Br, + 0), then N* = 1 or Nu, = NuXo, 
thus an ordinary solution of a heat transfer problem 
is obtained. The function N(K, B) has been calculated 
for K between 0.1 and 10 for the range of B from 0 to 
10.0 (see Table 3.3 in [4]). If N* - 1) =f(K) is 
plotted with the data of the table, then for large K 
(1.5 < K < 10) or small Br (0 < Br, < 0.7), a family 
of straight lines is obtained which cross the coordinate 
origin (see Fig. 3). Thus it may be written 

N* - 1 = CBr, (3.26) 

where constant C depends on B value. In the same 
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RG. 3.Plot of (N* - 1) vs l/K for different values ofE. 

figure C =f(B) is plotted. The plot shows that for 
B = 044 C = O-56. Thus for air (Pr = 0.7) 

N* - 1 = 0.56 Br,. (3.27) 

It is of interest to compare formula (3.27) with a 
similar expression resulting from an exact solution 
of a conjugate problem. In work [4] plots of B/B* = 
f(6 K) are presented (see Fig. 4.7) for three values 
of x (0.639, 264, 3.95) where BIB* = N*, 5 = x/b. 
The dimensionless x is 

(3.28) 

If the graphs presented in Fig. 4.7 of [4] are 
replotted as (N* - 1) =.f(Br,), a straight line will 
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be obtained crossing the coordinate origin (see Fig. 4) 

N* - 1 = 0.48Br,; 0 < Br, < 15 (3.29) 

that is very similar to formula (3.27). For small 

In Fig. 6 (N* - 1) =f(l/Br,) is plotted based on 

1 

O-6 - 

S 04- 
* 

0 02 04 06 06 10 / 2 

FIG. 4.Plot of (N* - 1) vs local numberlr,. 

values of K (Br, > 1) use of formula (3.25) yields the 

plots of (N* - 1) = ,f(K) shown in Fig. 5. For K 
within (0.1 < K < l.O), the plots show a curve 

family which cuts the sections on the ordinate with 
their lengths increasing with B (see Fig. 5). The 

FIG. 5. Plot of (N* - 1) vs K for different values of B 
between 0.1 and 0.6. 

slope of the straight lines also increases with B. It 
may approximately be written 

N* - 1 = C, - C;K = C, - C, $, (3.30) 
X 

the constants C,, C;, C, depend on B. For B = 044, 
C, = 0.93, C; = 0.38 and C, = 0.50 

Nu* - 1 = 0.93 - 0.50&; (2 < Br, < 20). (3.31) 
x 

FIG. 6.Plot of (N* - 1) vs Er; ‘. 

the data taken from Fig. 4.7 of [4]. This graph shows 
that approximate equation may be written as 

N* - 1 = 1.1 - 0.58 &; (0.7 < Br, < 2). (3.32) 
X 

Formula (3.32) is similar to (3.31). 

4. CONJUGATE SOLUTION USING BOUNDARY-LAYER 
EQUATION 

The integral heat transfer equation of a boundary 

layer reads 

; 4 (Tm - W,(Y) dy = a (4.1) 

0 

In approximate solutions for a laminar boundary 

layer the velocity distribution o,(Y) is of the form 

yx=3y_! y 
f-m 26 26’ 0 

(4.2) 

For a temperature distribution in the problem of 
interest it may be assumed that 

9, = T- q = a, + b,y + C,y’ + d,y3, (4.3) 

9, = 0 - eb = a, + b,y, (4.4) 
where@, = Tb = const. 

Boundary conditions may be written as follows 
aty=6, 

as 
9, = 9, = (T, - T,); - = 0 

8Y 
(4.5) 

aty =O 
9, = 9, = 9,; 1 (4.6) 
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sty= -b 

9, = 0. 

Using (4.5H4.7) yields 

(4.7) 

9 
9 =a +’ m -9 1~m-% 3 ---xy--i 

1 wz(j s; y, (4.8) 
T 

(4.9) 
6 280~ 4.64 _= - 
X J( > 13v,x = JRe,’ 

(4.17) 

where 9, is the boundary temperature variable along a formula for NuXo in accordance with (4.16) at z --f 0 
X is obtained as 

$w= A!?? 
1+z 

z = S@,P,) W,). (4.11) 

Substitution of formulas (4.2) and (4.8) into equation 
(4.1) gives 

63 

(4.12) 

6, is taken as the upper integration limit as at y > 6, 
9 = 9, .6,/d is denoted by t(r = 6,/d). For gases 
5 > 1 but differs from unity very slightly. In the 
subsequent calculation 5 > 1 is assumed. This assump- 
tion however gives a very slight error [9]. With 
account for relation (4.10) we have 

11 
9Z 

= ;a y(l+ (4.13) 

where y = zS, 
The first term in the square brackets of formula 

(4.13) is larger by a factor of 14 than the second one. 
Hence 

$1 +:)z%] = ,%:;Y+ Z) 
(4.14) 

with z -+ 0 the equation becomes 

hence 

+3 

J( ) 
i (3JPr)-‘, (4.15) 

that is exactly the same as the solution presented in 

c91. 

The local Nusselt number Nu, is defined by formula 

(4.8) 

w = “$ (4.16) 

Using the known approximate relation 

NuXo = 0.332 (Pr)+(Re,)*, (4.18) 

which is well known in the heat-transfer theory. 
Asymptotic solutions of equation (4.14) may be 

obtained at large z(z + co) and small z(z + 0). 
The approximate solution of equation (4.14) yields 

Nu, = ;; Pr*b[l + p(x)] (4.19) 

where fl is a constant factor, p(x) is some small 
function of x so that $x0. As z + 0 (small Br,) 

N*-l= Nux - N% z 0 33 &. 
NUXO . 

x (4.20) 

that is very similar to formulas (3.27H3.29). They 
only differ by a value of C. 

With large Br, (x + co or x -+ 0) a qualitative 
relation between N* and Br, is only obtainable as 
with Br, + co formula (4.8) fails to describe a tem- 
perature distribution 

N*- 1=@66-“~ 
B rx 

that with respect to N* =f(Br,) is the same as 
formula (3.30). 

5. DESIGN FORMULAS 

The analysis has been presented above of approxt- 
mate solutions for the Nusselt number in a laminar 
flow around a flat plate with thickness b and appre- 
ciable length 1 (b/l < 1). The solutions have been 
obtained from differential and integral relations of a 
boundary layer. These solutions have been compared 
with exact solutions for Br, in the range (0 < Br, < 
15). The comparison has revealed good agreement. 

It is demonstrated that if heat flux to the plate is 
accounted for, the resultant Nusselt number is larger 
since N* > 1 (Nu, > Nu,,). This increase may be 
explained as follows. The surface temperature of the 
wall T(0, x) decreases along x from T, at x = 0 to 
q at x = co, the temperature driving force AT( T - T,) 
thus increasing along x. It is known from the heat 
transfer theory that if the temperature difference AT 
increases in the same direction as the fluid flow, the 



264 A. V. LUIKOV 

heat transfer coefficient also increases in the same 
direction x. The behaviour and the value of T(O,x) 
depends on the value of the Brun number, which thus 

characterizes nonuniformity of the plate temperature 
that directly affects heat transfer. 

At small Brun numbers (Br, < 1.5) formula (3.26) 
may be used, at large Brun numbers (BrX > 1.5) use 
is to be made of formula (3.30). 

For engineering calculations formulas (3.26) and 
(3.30) may be substituted by a single formula 

N* - 1 = CBr: Br, < 20 (4.22) 

where exponent p depends on Br, value and for 

Br, > 1.5, p = 1. Constant C depends on Pr. At 

Br, > 1.5 the exponent p and constant C depend on 

the range of Br, and Pr. 

Formula (3.26) may be used to estimate the mini- 
mum Brun number below which the problem may 

not be solved as a conjugate one. If C = 0.5 is 
assumed, the Brun number may be less than 0.1 

(Br, < O*l), the error being 5 per cent. When Br > 0.1 

the problem on a flow around a plate should be solved 
as a conjugate one. 

Estimation of the larger value of Br, which may be 
encountered in practice is of interest. 

In a laminar water flow over a steel plate (n, = 
0.46 W/m deg, 1, = 0.68 W/m deg, Pr = 1.75) with 
Re, = lo6 and ratio b/l x 0.05 the mean Brun 

number Br, will be about 1.8 that is appreciably 
larger than 0.1. In a laminar air flow over a steel 
plate (i, = 0.028 W/m deg, Pr = 0.7) with the same 

Re, and b/l Br, = 0.05 which implies that conjuga- 
tion may be neglected and the problem should be 
solved by the ordinary method using formula (1.6). 

In case of a glass plate however (1, = 0.096 W/m 
deg) in an air flow with the same parameters (Rr, = 
106, b/l = 0.05), Br, = 2.6. Thus the problem should 

be solved as a conjugate one. The same situation is 
in the case of a metal plate of titanium alloy (1, = 
15.6 W/m deg) in an air flow (Re, = 106, Pr = 0.7) 

wherein Br, = 0.16, i.e. more than 0.1). 
Formula (4.22) implies that with Br, = 0.5 NM, 

increases by 25 per cent compared to Nu, (C z 0.5, 

N* = 1.25) and with Br, = 1 Nu, and consequently 
the heat transfer coefficient will increase by 50 per 
cent compared to their values calculated by the 

classical heat transfer equations. To conclude the 
paper it should be pointed out that in case of a 

turbulent flow past a plate conjugation is of greater 
effect on heat transfer since according to formula 
(2.1t2.5) the Brun number is directly proportional 
to the Nusselt number. 
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PROBLBME CONJUGUE DE TRANSFERT THERMIQUE PAR CONVECTION 

R&urn&On analyse un problkme conjugue de transfert thermique convectifdans un Ccoulement laminaire 
incompressible autour d’une plaque plane d’tpaisseur iinie. Pour le nombre de Nusselt local Nu, on propose 
les formules suivantes : 

(Nux/Nu,,) - 1 = CBr, (0 < Br, < 1.5) 

(NudNu,,) - 1 = C, - (C/BrJ (I,5 < BrJ 

oh Nu,, est le nombre de Nusselt pour Br, = 0 (le nombre de Nusselt d8ini par les iquations ordinaires) 
et Br, est le nombre de Brun local (un nombre lit B la conjugaison). 

KONJUGIERTE KONVEKTIVE W;iRMEUBERTRAGUNGSPROBLEME 

Zusammenfassung-Ausgehend von der Analyse eines konjugierten Problems der konvektiven W&me- 
iibertragung bei laminarer inkompressibler Strijmung beidseitig einer ebenen Platte endlicher Dicke sind 
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zwei Gleichungen fiir die ijrtliche Nusselt-Zahl Nu, vorgeschlagen worden. 

(Nu,/Nu,,) - 1 = C’Br, fiir 0 < Br, < 1,5 

(NuJNu,,) - 1 = Cc - (C/Br,) fur 1,5 < Br, 

Dabei ist Nu,, die Nusselt-Zahl mit Br, = 0 (die Nusselt-Zahl ist durch die Wlrmeiibergangsgleichung 
detiniert) und Br, ist die ijrtliche Brun-Zahl (eine Konjugations-Zahl). 

COIIPHXEHHbIE 3AJJA=IB KOHBEKTHBHOI’O TEI-IJIOOBMEHA 

Amomqm-Ha OCHOBe IIpIhIWKeHHkJX peIUeH&Iih COIIpFImeHHOh 3aAaW KOHBeKTHBHOrO 

TeIIJIOO6MeHa IIpM JIaMMHapHOM 06TeKaHEIII IIJIOCKOZt IIJIaCTHHbl KOHeqHOti TOJIIQIIHbI HeCHUf- 

MaeMOm XCLiAKOCTbIO IIpeAJIOlKeHbI paCWTHbIe @OpMynbI nJIfI JIOK JIbHOT YllCJIa HyCCKnbTa 

Nu, 
--1 = CBr,(O < Br, < 1,5) 
Nu,, 

Nu, 
--1 = Co-z (1,5 < Br, < co), 
Nuzo z 

me Nu,, - aHaYeHI4e YHCJIa HyCCenbTa nptl BP, = 0 (WWIO HyCCKJIbTa, OnpeRemeMoe no 

06UeH3BeCTHbIM @OpMyJIaM Tt'nJI006MeHbI),~~,-JI0KaJIbH0c:WCJI0WCJI0 BpIOHa(KpWTepHf4 

COIIpR?+teHHOCTti). 


